Wednesday, 13 December 2017

Previsão de média móvel em movimento


A abordagem mais simples seria levar a média de janeiro a março e usar isso para estimar as vendas de abril de 1992: (129 134 122) 3 128.333 Assim, com base nas vendas de janeiro a março, você prevê que as vendas em abril serão de 128.333. Uma vez que as vendas reais de April8217s chegam, você calcularia a previsão para maio, desta vez usando fevereiro até abril. Você deve ser consistente com o número de períodos que você usa para a previsão média móvel. O número de períodos que você usa em suas previsões de média móvel é arbitrário, você pode usar apenas dois períodos, ou cinco ou seis períodos, o que você deseja gerar suas previsões. A abordagem acima é uma média móvel simples. Às vezes, os meses mais recentes8217 as vendas podem ser influenciadores mais fortes das vendas no final do mês8217s, então você quer dar aos mais próximos meses mais peso no seu modelo de previsão. Esta é uma média móvel ponderada. E, assim como a quantidade de períodos, os pesos atribuídos são puramente arbitrários. Let8217s dizem que você queria dar vendas de March8217s 50 pesos, peso de February8217s 30 e January8217s 20. Então sua previsão para abril será 127,000 (122,50) (13,30) (129,20) 127. Limitações dos métodos médios em movimento As médias móveis são consideradas como uma técnica de previsão de 8220smoothing8221. Como você está tomando uma média ao longo do tempo, você está suavizando (ou suavizando) os efeitos de ocorrências irregulares dentro dos dados. Como resultado, os efeitos da sazonalidade, ciclos econômicos e outros eventos aleatórios podem aumentar drasticamente o erro de previsão. Dê uma olhada em um valor total de dados do ano de 8217 e compare uma média móvel de 3 períodos e uma média móvel de 5 períodos. Observe que, nesta instância, não criei previsões, mas sim centrou as médias móveis. A primeira média móvel de 3 meses é para fevereiro e a média de janeiro, fevereiro e março. Eu também fiz similar para a média de 5 meses. Agora dê uma olhada no seguinte quadro: O que você vê Não é a série de média móvel de três meses muito mais suave do que as séries reais de vendas E quanto a média móvel de cinco meses It8217s ainda mais suave. Portanto, quanto mais períodos você usa em sua média móvel, mais suave será sua série temporal. Assim, para a previsão, uma média móvel simples pode não ser o método mais preciso. Os métodos de mudança de média revelam-se bastante valiosos quando você tenta extrair os componentes sazonais, irregulares e cíclicos de uma série temporal para métodos de previsão mais avançados, como regressão e ARIMA, e o uso de médias móveis na decomposição de uma série de tempo será abordado mais tarde Na série. Determinando a precisão de um modelo médio móvel Geralmente, você deseja um método de previsão que tenha o menor erro entre os resultados reais e previstos. Uma das medidas mais comuns de precisão de previsão é o desvio absoluto médio (MAD). Nesta abordagem, para cada período da série temporal para o qual você gerou uma previsão, você toma o valor absoluto da diferença entre esse período8217s atual e os valores previstos (o desvio). Então você mede esses desvios absolutos e você obtém uma medida de MAD. MAD pode ser útil para decidir sobre o número de períodos que você mede, e a quantidade de peso que você coloca em cada período. Geralmente, você escolhe aquele que resulta em menor MAD. Aqui é um exemplo de como MAD é calculado: MAD é simplesmente a média de 8, 1 e 3. Médias móveis: Recapitulação Ao usar as médias móveis para a previsão, lembre-se: as médias móveis podem ser simples ou ponderadas O número de períodos que você usa para o seu Média e qualquer peso atribuído a cada um é estritamente arbitrário As médias móveis suavizam os padrões irregulares em dados de séries temporais, quanto maior o número de períodos usados ​​para cada ponto de dados, maior o efeito de suavização. Por causa do alisamento, a previsão das vendas no mês seguinte, As vendas mais recentes de alguns meses8217 podem resultar em grandes desvios devido a padrões sazonais, cíclicos e irregulares nos dados e as capacidades de suavização de um método de média móvel podem ser úteis na decomposição de uma série de tempo para métodos de previsão mais avançados. Próxima Semana: Suavização Exponencial Na próxima semana8217s Previsão Sexta. Vamos discutir métodos de suavização exponencial, e você verá que eles podem ser muito superiores aos métodos de previsão média móvel. Ainda não sei por que nossas publicações de Previsão de sexta-feira aparecem na quinta-feira Saiba em: tinyurl26cm6ma Como esta: Postar navegação Deixe uma resposta Cancelar resposta Eu tive duas perguntas: 1) Você pode usar a abordagem de MA centrada para prever ou apenas para remover a sazonalidade 2) Quando Você usa o t simples (t-1t-2t-k) k MA para prever um período à frente, é possível prever mais de 1 período de antecedência, acho que sua previsão seria um dos pontos que se alimentaria no próximo. Obrigado. Ame as informações e as suas explicações. Fico feliz por gostar do blog I8217m, porque vários analistas usaram a abordagem centralizada de MA para a previsão, mas eu pessoalmente não faria isso, uma vez que essa abordagem resulta em perda de observações em ambos os lados. Isso, na verdade, liga a sua segunda pergunta. Geralmente, o MA simples é usado para prever apenas um período à frente, mas muitos analistas 8211 e eu, às vezes, 8211 usarei a previsão de um período antes como uma das entradas para o segundo período à frente. It8217s importante lembrar que quanto mais longe o futuro você tentar prever, maior será seu risco de erro de previsão. É por isso que eu não recomendo MA centrado para previsão 8211 a perda de observações no final significa ter que confiar nas previsões para as observações perdidas, bem como o (s) período (s) à frente, então há maiores chances de erro de previsão. Leitores: you8217re convidado a analisar isso. Você tem algum pensamento ou sugestão sobre este Brian, obrigado pelo seu comentário e seus cumprimentos no blog, iniciativa agradável e ótimas explicações. It8217s é realmente útil. Eu prevei placas de circuito impresso personalizadas para um cliente que não fornece previsões. Eu usei a média móvel, no entanto, não é muito preciso, pois a indústria pode subir e descer. Nós vemos em direção ao meio do verão até o final do ano que o envio de pcb8217s está em alta. Então, vemos que, no início do ano, diminui a velocidade. Como posso ser mais preciso com os meus dados Katrina, do que você me disse, parece que as vendas da placa de circuito impresso possuem um componente sazonal. Eu falo na sazonalidade em algumas das outras publicações da sexta-feira de previsão. Outra abordagem que você pode usar, o que é bastante fácil, é o algoritmo Holt-Winters, que leva em consideração a sazonalidade. Você pode encontrar uma boa explicação aqui. Certifique-se de determinar se seus padrões sazonais são multiplicativos ou aditivos, pois o algoritmo é um pouco diferente para cada um. Se você traçar seus dados mensais de alguns anos e ver que as variações sazonais no mesmo período de anos parecem ser constantes ano a ano, então a sazonalidade é aditiva se as variações sazonais ao longo do tempo parecem estar aumentando, então a sazonalidade é Multiplicativo. A maioria das séries temporais sazonais serão multiplicativas. Em caso de dúvida, assumir a multiplicação. Boa sorte Oi, entre esses métodos:. Nave Forecasting. Atualizando a média. Mude a média de comprimento k. A média móvel ponderada do comprimento k OU Suavização exponencial Qual desses modelos de atualização você me recomendou usando para prever os dados. Por minha opinião, estou pensando em Moeda em Movimento. Mas eu não sei como deixar claro e estruturado. Realmente depende da quantidade e qualidade dos dados que você possui e do seu horizonte de previsão (longo prazo, médio ou curto prazo). Os dados de suavização removem a variação aleatória e mostram tendências E componentes cíclicos Inerente na coleta de dados obtidos ao longo do tempo é alguma forma de variação aleatória. Existem métodos para reduzir o cancelamento do efeito devido a variação aleatória. Uma técnica freqüentemente usada na indústria é o alisamento. Esta técnica, quando corretamente aplicada, revela mais claramente a tendência subjacente, os componentes sazonais e cíclicos. Existem dois grupos distintos de métodos de suavização Métodos de média Métodos de suavização exponencial Tomar médias é a maneira mais simples de suavizar os dados Em primeiro lugar, investigaremos alguns métodos de média, como a média simples de todos os dados passados. Um gerente de um armazém quer saber o quanto um fornecedor típico entrega em unidades de 1000 dólares. Heshe toma uma amostra de 12 fornecedores, aleatoriamente, obtendo os seguintes resultados: A média calculada ou a média dos dados 10. O gerente decide usar isso como a estimativa de despesas de um fornecedor típico. Isto é uma estimativa boa ou ruim O erro quadrático médio é uma maneira de julgar o quão bom é um modelo. Calculamos o erro quadrático médio. O erro montante verdadeiro gasto menos o valor estimado. O erro ao quadrado é o erro acima, ao quadrado. O SSE é a soma dos erros quadrados. O MSE é a média dos erros quadrados. Resultados MSE, por exemplo, os resultados são: Erros de Erro e Esquadrão A estimativa 10 A questão surge: podemos usar a média para prever a renda se suspeitarmos de uma tendência. Um olhar no gráfico abaixo mostra claramente que não devemos fazer isso. A média pesa todas as observações passadas igualmente. Em resumo, afirmamos que a média ou média simples de todas as observações passadas é apenas uma estimativa útil para a previsão quando não há tendências. Se houver tendências, use diferentes estimativas que levem em consideração a tendência. A média pesa igualmente todas as observações passadas. Por exemplo, a média dos valores 3, 4, 5 é 4. Sabemos, é claro, que uma média é calculada adicionando todos os valores e dividindo a soma pelo número de valores. Outra maneira de calcular a média é adicionando cada valor dividido pelo número de valores, ou 33 43 53 1 1.3333 1.6667 4. O multiplicador 13 é chamado de peso. Em geral: barra frac suma esquerda (fração direita) x1 esquerda (fração direita) x2,. , Esquerda (fração direita) xn. Os (a esquerda (fratura direita)) são os pesos e, é claro, somam para 1. Na prática, a média móvel proporcionará uma boa estimativa da média das séries temporais se a média for constante ou lentamente. No caso de uma média constante, o maior valor de m dará as melhores estimativas da média subjacente. Um período de observação mais longo significará os efeitos da variabilidade. O objetivo de fornecer um m menor é permitir que a previsão responda a uma mudança no processo subjacente. Para ilustrar, propomos um conjunto de dados que incorpora mudanças na média subjacente das séries temporais. A figura mostra as séries temporais usadas para ilustração juntamente com a demanda média da qual a série foi gerada. A média começa como uma constante em 10. Começando no tempo 21, ela aumenta em uma unidade em cada período até atingir o valor de 20 no tempo 30. Então, torna-se constante novamente. Os dados são simulados adicionando à média, um ruído aleatório de uma distribuição Normal com média zero e desvio padrão 3. Os resultados da simulação são arredondados para o inteiro mais próximo. A tabela mostra as observações simuladas usadas para o exemplo. Quando usamos a tabela, devemos lembrar que em qualquer momento, apenas os dados passados ​​são conhecidos. As estimativas do parâmetro do modelo, para três valores diferentes de m, são mostradas em conjunto com a média das séries temporais na figura abaixo. A figura mostra a estimativa média móvel da média em cada momento e não a previsão. As previsões mudariam as curvas médias móveis para a direita por períodos. Uma conclusão é imediatamente aparente da figura. Para as três estimativas, a média móvel está atrasada por trás da tendência linear, com o atraso crescente com m. O atraso é a distância entre o modelo e a estimativa na dimensão temporal. Por causa do atraso, a média móvel subestima as observações à medida que a média está aumentando. O viés do estimador é a diferença em um momento específico no valor médio do modelo e o valor médio previsto pela média móvel. O viés quando a média está aumentando é negativo. Para uma média decrescente, o viés é positivo. O atraso no tempo e o viés introduzido na estimativa são funções de m. Quanto maior o valor de m. Maior a magnitude do atraso e do viés. Para uma série de crescimento contínuo com tendência a. Os valores de lag e tendência do estimador da média são dados nas equações abaixo. As curvas de exemplo não combinam essas equações porque o modelo de exemplo não está aumentando continuamente, antes ele começa como uma constante, muda para uma tendência e depois se torna constante novamente. Também as curvas de exemplo são afetadas pelo ruído. A previsão média móvel de períodos no futuro é representada pela mudança das curvas para a direita. O atraso e o desvio aumentam proporcionalmente. As equações abaixo indicam o atraso e a polarização de um período de previsão para o futuro em relação aos parâmetros do modelo. Novamente, essas fórmulas são para uma série de tempo com uma tendência linear constante. Não devemos nos surpreender com esse resultado. O estimador da média móvel é baseado na suposição de uma média constante, e o exemplo tem uma tendência linear na média durante uma parcela do período de estudo. Uma vez que as séries em tempo real raramente obedecerão exatamente aos pressupostos de qualquer modelo, devemos estar preparados para esses resultados. Também podemos concluir a partir da figura que a variabilidade do ruído tem o maior efeito para m menores. A estimativa é muito mais volátil para a média móvel de 5 do que a média móvel de 20. Temos os desejos conflitantes de aumentar m para reduzir o efeito da variabilidade devido ao ruído e diminuir m para tornar a previsão mais sensível às mudanças Em média. O erro é a diferença entre os dados reais e o valor previsto. Se a série temporal é verdadeiramente um valor constante, o valor esperado do erro é zero e a variância do erro é composta por um termo que é uma função e um segundo termo que é a variância do ruído,. O primeiro termo é a variância da média estimada com uma amostra de observações m, assumindo que os dados provêm de uma população com um meio constante. Este termo é minimizado fazendo m o maior possível. Um grande m faz com que a previsão não responda a uma mudança nas séries temporais subjacentes. Para tornar as previsões sensíveis às mudanças, queremos m o mais pequeno possível (1), mas isso aumenta a variação do erro. A previsão prática requer um valor intermediário. Previsão com o Excel O suplemento de previsão implementa as fórmulas de média móvel. O exemplo abaixo mostra a análise fornecida pelo suplemento para os dados da amostra na coluna B. As primeiras 10 observações são indexadas -9 a 0. Comparadas com a tabela acima, os índices do período são deslocados em -10. As primeiras dez observações fornecem os valores de inicialização para a estimativa e são usadas para calcular a média móvel para o período 0. A coluna MA (10) (C) mostra as médias móveis calculadas. O parâmetro médio móvel m está na célula C3. A coluna Fore (1) (D) mostra uma previsão para um período no futuro. O intervalo de previsão está na célula D3. Quando o intervalo de previsão é alterado para um número maior, os números na coluna Fore são deslocados para baixo. A coluna Err (1) (E) mostra a diferença entre a observação e a previsão. Por exemplo, a observação no tempo 1 é 6. O valor previsto feito a partir da média móvel no tempo 0 é 11,1. O erro então é -5.1. O desvio padrão eo desvio médio médio (MAD) são calculados nas células E6 e E7, respectivamente.

No comments:

Post a Comment